Commercial and Industrial Wiring and Raceway Chart

Overcurrent Protection Size	$\begin{aligned} & \text { Copper }{ }^{(1)} \\ & \text { Wire } \\ & 75^{\circ} \mathrm{C} \\ & \text { Terminal } \end{aligned}$	Maximum ${ }^{(2)}$ Continuous Ampere Load	Raceway ${ }^{(3)}$	Equipment ${ }^{(4)}$ Ground Wire	Maximum Continuous Single-Phase VA Load ${ }^{(2)}$					Maximum Continuous Three-Phase VA Load ${ }^{(2)}$		
					120 V	208V	240 V	277V	480V	208 V	240 V	480V
15	14	12	$1 / 2{ }^{\prime \prime}$	14	1,440	2,496	2,880	3,324	5,760	4,323	4,988	9,976
20	12	16	$1 / 2$ "	12	1,920	3,328	3,840	4,432	7,680	5,764	6,651	13,302
25	10	20	3/4"	10	2,400	4,160	4,800	5,540	9,600	7,205	8,314	16,627
30	10	24	$3 / 4$ "	10	2,880	4,992	5,760	6,648	11,520	8,646	9,976	19,953
35	8	28	1 "	10	3,360	5,824	6,720	7,756	13,440	10,087	11,639	23,278
40	8	32	1"	10	3,840	6,656	7,680	8,864	15,360	11,528	13,302	26,604
45	8	36	1 "	10	4,320	7,488	8,640	9,972	17,280	12,969	14,964	29,929
50	8	40	1"	10	4,800	8,320	9,600	11,080	19,200	14,410	16,627	33,254
60	6	48	1 "	10	5,760	9,984	11,520	13,296	23,040	17,292	19,953	39,905
70	4	56	$11 / 4$ "	8	6,720	11,648	13,440	15,512	26,880	20,174	23,278	46,556
80	4	64	$11 / 4 "$	8	7,680	13,312	15,360	17,728	30,720	23,056	26,604	53,207
90	3	72	$11 / 4$ "	8	8,640	14,976	17,280	19,944	34,560	25,938	29,929	59,858
100	3	80	$11 / 4 "$	8	9,600	16,640	19,200	22,160	38,400	28,820	33,254	66,509
110	2	88	$11 / 2{ }^{\prime \prime}$	6	10,560	18,304	21,120	24,376	42,240	31,703	36,580	73,160
125	1	100	2 "	6	12,000	20,800	24,000	27,700	48,000	36,026	41,568	83,136
150	1/0	120	2"	6	14,400	24,960	28,800	33,240	57,600	43,231	49,882	99,763
175	2/0	140	2 "	6	16,800	29,120	33,600	38,780	67,200	50,436	58,195	116,390
200	3/0	160	$2^{1 / 2} 2^{\prime \prime}$	6	19,200	33,280	38,400	44,320	76,800	57,641	66,509	133,018
225	4/0	180	$2^{1 / 2 "}$	4	21,600	37,440	43,200	49,860	86,400	64,846	74,822	149,645
250	250 kcmil	200	3 "	4	24,000	41,600	48,000	55,400	96,000	72,051	83,136	166,272
300	350 kcmil	240	$31 / 2^{\prime \prime}$	4	28,800	49,920	57,600	66,480	115,200	86,461	99,763	199,526
350	400 kcmil	$268{ }^{(5)}$	$31 / 2^{\prime \prime}$	3	32,160	55,744	64,320	74,236	128,640	96,549	111,402	222,804
400	500 kcmil	$304{ }^{(5)}$	4"	3	36,480	63,232	72,960	84,208	145,920	109,518	126,367	252,733
400	600 kcmil	320	4"	3	38,400	66,560	76,800	88,640	153,600	115,282	133,108	266,035

Conductor size based on $75^{\circ} \mathrm{C}$ terminal rating [110.14(C)(1)]. Ampacity based on four $90^{\circ} \mathrm{C}$ current-carrying conductors [Table 310.15(B)(3)(a) and Table 310.15(B)(16)].
${ }^{2}$ Maximum continuous nonlinear load in an ambient temperature of $30^{\circ} \mathrm{C}$ limited to 80 percent of the overcurrent device rating or the conductor ampacity, which ever is less [210.19(A), 240.6(A), 215.2(A)(1)].
${ }^{(3)}$ To ensure ease of installation, raceways are sized to six THHN conductors in PVC conduit [Annex C.10]
${ }^{(4)}$ Copper equipment grounding conductor is sized in accordance with Table 250.122 .
${ }^{\text {(5) }}$ Maximum continuous load is limited to 80 percent of $75^{\circ} \mathrm{C}$ conductor ampacity because the conductor ampacity is lower than the overcurrent protection device rating

Formulas

Conversion Formulas

Area of Circle $=\pi \mathrm{r}^{2}$
Break-even Dollars = Overhead Cost $\$ /$ Gross Profit \% Busbar Ampacity $\mathrm{AL}=700 \mathrm{~A}$ sq. in. and $\mathrm{CU}=1,000 \mathrm{~A}$ sq. in. Centimeters $=$ Inches $/ 2.54$
Inch $=0.0254$ Meters
Inch $=2.54$ Centimeters
Inch $=25.40$ Millimeters
Kilometer $=0.6213$ Miles
Length of Coiled Wire $=$
Diameter of Coil (average) x Number of Coils x Lightning Distance in Miles =

Seconds between flash and thunder/4.68
Meter $=39.37$ Inches
Mile $=5,280 \mathrm{ft}, 1,760$ yards, 1,609 meters, 1.609 km Millimeter $=0.03937$ Inch
Selling Price $=$ Estimated Cost $\$ /(1-$ Gross Profit $\%)$ Speed of Sound (Sea Level) $=1,128 \mathrm{fps}$ or 769 mph Temp C $=($ Temp F - 32)/1.80 Temp F $=($ Temp $\mathrm{C} \times 1.80)+32$
Yard $=0.9144$ Meters

Electrical Formulas Based on $\mathbf{6 0 ~ H z}$

Capacitive Reactance $\left(X_{\mathrm{c}}\right)$ in $0 \mathrm{hms}=1 /(2 \pi \mathrm{fC})$ Effective (RMS) ac Amperes = Peak Amperes x 0.707 Effective (RMS) ac Volts = Peak Volts $\times 0.707$ Efficiency (percent) $=$ OutputInput $\times 100$ Efficiency = Output/Input
Horsepower $=$ Output Watts $/ 746$
Inductive Reactance $\left(X_{L}\right)$ in $0 \mathrm{hms}=2 \pi \mathrm{fL}$
Input $=$ Output/Efficiency

Neutral Current $($ Wye $)=$
$\sqrt{ }\left[\left(L_{2}{ }^{2}+L_{2}{ }^{2}+L_{3}{ }^{2}\right)-\left[\left(L_{1} X\right.\right.\right.$
Output $=$ Input X Efficiency
Peak AC Volts $=$ Effective (RMS) AC Volts $\times \sqrt{2}$
Peak Amperes $=$ Effective (RMS) Amperes $\times \sqrt{ } 2$
Power Factor (PF) = Watts $/$ NA
VA (apparent power) $=$ Volts x Ampere or Watts/Power Factor VA single-Phase $=$ Volts \times Amperes
VA three-Phase $=$ Volts \times Amperes $\times \sqrt{ } 3$
Watts (real power) Single-Phase $=$ Volts \times Amperes \times Power Factor
Watts (real power) Three-Phase $=$ Volts \times Amperes x
Power Factor $x \sqrt{ } 3$

Parallel Circuits

Note 1: Total resistance is always less than the smallest resistor $R T=1 /(1 / R 1+1 / R 2+1 / R 3+\ldots)$
Note 2: Total current is equal to the sum of the currents of all parallel resistors
Note 3: Total power is equal to the sum of power of all parallel resistors Note 4:Voltage is the same across each of the parallel resistors

Series Circuits

Note 1: Total resistance is equal to the sum of all the resistors
Note 2: Current in the circuit remains the same through all the resistors
Note 3:Voltage source is equal to the sum of voltage drops of all resistors Note 4: Power of the circuit is equal to the sum of the power of all resistors

Transformer Ampere

Secondary Amperes single-Phase = VANolts

Secondary Amperes three-Phase $=$ VA $/$ Nolts $\times \sqrt{3}$ Secondary Available Fautt single-Phase = VA(Nolts x \%impedance)

Transformer Amperes (continued) Secondary Available Fault three-Phase = VA(Nolts $\times \sqrt{ } 3 \times \%$ Impedance) Delta 4-Wire: Line Amperes = Phase (one winding) Amperes $x \sqrt{3}$ Detta 4-Wire: Line Volts = Phase (one Winding) Volts Delta 4-Wire: High-Leg Voltage (L-to-G) = Phase (one winding) Volts $\times 0.50 \mathrm{x} \sqrt{3}$ Wye: Line Volts = Phase (one winding) Volts $x \sqrt{ } 3$ Wye: Line Amperes = Phase (one winding) Amperes

Voltage Drop

VD (single-Phase) $=2 \mathrm{KID} / \mathrm{Cmil}$
VD (three-Phase) $=\sqrt{ } 3 \mathrm{KID} / \mathrm{Cmil}$
Cmil (single-Phase) $=2$ KIDND Cmil (three-Phase) $=\sqrt{ } 3$ KIDND

Code Rules

Breaker/Fuse Ratings - 240.6(A) Conductor Ampacity - 310.15 and Table 310.15 (B) 16 Equipment Grounding Conductor - 250.122 Grounding Electrode Conductor - 250.66 Motor Conductor Size - 430.22 (Single) 430.24 (Multiple)

Motor Short-Circuit Protection - 430.52 Transformer Overcurrent Protection - 450.3

Legend

$\pi(\mathrm{Pi})=3.142$ (approximately) $\sqrt{ } 2=1.414$ (approximately) $\sqrt{ } 3=1.732$ (approximately) $\mathrm{f}=$ frequency
= radius
d = diameter
C = Capacitance (farads) L = Inductance (henrys) Cmil $=$ Circular Mils VD = Volts Drop I = Amperes of load
D = Distance one way $\mathrm{K} 75^{\circ} \mathrm{C}=(12.90$ ohms CU) (21.20 ohms AL)

